DNSSEC
Key Management
Part 1 of 3 – Key Storage
About the participants

• Alan Clegg
 – ISC Training and Support Engineer
 e-mail - aclegg@isc.org
 twitter - @knobee

• Larissa Shapiro
 – ISC Product Manager
 e-mail - larissas@isc.org
 twitter - @ISCdotORG
Part One? What's this?

• Other presentations on DNSSEC Key Management will follow, including:
 – Key Rollover Policies
 – Key Rollover Tools and Practices

• But for now, let's talk storage.
What are keys for anyway?

- **Zone Signing Key**
 - Creates the signatures on the resource record sets in the zone

- **Key Signing Key**
 - Creates a signature on the DNSKEY resource record set
 - Provides the "Secure Entry Point" into this zone from the parent
How do I create them?

- BIND distribution provides the application `dnssec-keygen`

- Generates both ZSK and KSK
 - Type of keys depends on flag option
 - `-f ksk`

- Each run of `dnssec-keygen` creates two different files...
Two files?

- DNSSEC uses Public Key encryption
 - Private and Public portion for each key
 - Private portion must remain secret
 - Public portion is published in zone data
KSK and ZSK into the zone!

• To allow remote validation of the zone data, the public portions of the KSK and ZSK must be included in the zone before signing:

 INCLUDE or cut-and-paste

• Automation in BIND 9.7
How does signing happen?

• Prior to BIND 9.7
 – Zones manually signed using "dnssec-signzone"

• Since 9.7
 – Manual signing is enhanced
 – Automatic (online) re-signing available
Manual Signing

• Entire signing process is done from the command line

 – Operator must have access to both public (included) and private (signing) portions of the key
 – Unsigned zone is completely signed
 – Already signed zone is re-signed (as needed)
Dynamic Signing

• BIND deals with signing the zone "on the fly"
 – Human is no-longer in the loop
 – BIND needs access to the keys
Where do we store keys?

• Two current options:
 - In the filesystem
 - Hardware Security Module (HSM)
Filesystem – Good enough?

• Prior to 9.7, keep the keys with the zone data was the best choice..

Pro:
Simple to tell which keys are available for each zone

Con:
Intermingles "private" and "public" data
So, 9.7 makes this better?

• With 9.7, DNSSEC tools gained a "–K" option

 – Specifies location of key directory

• For signing, read key from there
• For generating, write key to there
Keys go where?

• In addition, named has a matching option

 key-directory

• Configured per-zone or at global scope
A CRYPTO NERD’S IMAGINATION:

His laptop’s encrypted. Let’s build a million-dollar cluster to crack it.

No good! It’s 4096-bit RSA!

Blast! Our evil plan is foiled!

WHAT WOULD ACTUALLY HAPPEN:

His laptop’s encrypted. Drug him and hit him with this $5 wrench until he tells us the password.

Got it.

http://www.xkcd.com/538/
I'd like to not be beaten..

- KSK private key files can be kept offline until needed

 - Since the KSK only signs the DNSKEY resource record set, it is only needed during changes of that RRset

 - KSK or ZSK rollovers
Don't the RRSIGs expire?

• The signature on the DNSKEY RRSET can be artificially extended so that it is not re-created every 30 days.

 – This makes the key more vulnerable to replay attacks (the reason for signature expiration)
If I need more security...

• The filesystem is always vulnerable to local "attacks" by privileged users
 - "high value" zones need better protection
 - Mandates are sometimes motivation for better protection (FIPS 140-2)
Hardware Security Module

• Hardware Security Modules (HSMs) provide non-extractable private keys

• Public key portion is still in the filesystem
 – Needed for "inclusion" into the zone
Ok, how does it work?

- Signing application must have access to hardware device
 - named or dnssec-signzone
 - Access through a modified OpenSSL library
Signing...

- The signing of zone data takes place in the Hardware Security Module

- The KSK private data is never exposed to a potential attacker

- RRs signed/second depends more on the HSM
Modified OpenSSL?

• Patches are included in BIND distributions
 – Adds "key by reference" and PIN management
 – Does NOT replace system version of OpenSSL
So, does it play nicely?

• Key creation with an HSM uses "pkcs11-keygen" instead of "dnssec-keygen"

• Automatic re-signing (via named) is able to be automated

 – PIN must be stored in the filesystem...
Where do I get one?

- Keyper devices are available individually and as a bundled consulting/install product from ISC

- Contact your ISC account manager for more information
Questions or comments?